Digestive System
Overview

- Basic digestive and functional processes
- The digestive organs
- Chemical digestion
- Absorption
- Elimination
Basic digestive and functional processes

- Ingestion – food intake
- Propulsion – moves food along tract
- Digestion – break down of food
- Absorption – into blood or lymph
- Defecation – eliminate residue
Propulsion

- Swallowing
 - voluntary
- Peristalsis
 - involuntary
Digestion

- Mechanical – increase surface area of food particles
 - Teeth and tongue
 - Stomach churning
 - Segmentation

- Chemical – breakdown of large molecules into smaller ones
Macromolecules and what they break down into

- Polysaccharides
 - Monosaccharides
- Lipids
 - Glycerol
 - Fatty acids
- Proteins
 - Amino acids
- Nucleic acids
 - Nucleotides
The Digestive Tract Organs

Mouth

Pharynx

Esophagus

Large Intestine

Stomach

Small Intestine

Anus

Rectum

Gastrointestinal tract
The Digestive Tract Accessory Organs

- Teeth, tongue, Salivary glands
- Liver
- Gall bladder
- Pancreas
Peritoneal relationships

Peritoneum – slippery membranes that line the body cavity
- Visceral
- Parietal
- Mesentery – double layer of peritoneum
 - Path for blood vessels and nerves
 - Fat stored here
Structural plan of digestive tract

- **Mucosa**
 - Epithelial lining
 - Secretes mucus, enzymes, hormones
 - Lamina propria
 - Connective tissue
 - Blood supply to epithelium
 - Absorbtion
 - Muscularis mucosae
 - Twitches
 - Causes folding
Structural plan of digestive tract

Submucosa
- Loose connective tissue
- Blood vessels
- Lymph vessels
- Nerves
- Extremely elastic
Structural plan of digestive tract

- **Muscularis**
 - **Functions**
 - Peristalsis
 - Segmentation
 - Inner layer
 - Circular
 - Forms sphincters
 - Prevents backflow
 - Controls passage
 - Outer layer
 - Longitudinal
Serosa
- Visceral peritoneum
- Loose connective tissue
- Blood vessels
- Produce serous fluid
Enteric nervous system

- Submucosal nerve plexus
- Glands and muscle in mucosa
- Myenteric nerve plexus
- Muscularis
- Secretion of accessory organs
Digestion starts in the Mouth

- Mastication
 - Teeth
 - Tongue
 - Cheeks
 - Lips
 - Hard palate
Salivary Glands

- Intrinsic salivary glands
 - Dispersed within oral cavity
 - Tongue
 - Lips
 - Cheeks
 - Keeps mouth moist
- Extrinsic salivary glands
 - Large, discrete organs
 - Parotid
 - Submandibular
 - Sublingual
 - Secrete upon salivation

Secrete 1-1.5L of saliva each day!
Saliva

- **Water (98%)**
- **Electrolytes**
 - Sodium, potassium, chloride, phosphate, bicarbonate
 - pH – 6.8-7.0
- **Salivary amylase**
 - Begins starch digestion
 - most active in lower pH
- **Lingual lipase**
 - Activated by stomach acid
 - Digests fat
- **Mucus**
 - Lubricates food
 - Binds food into a bolus
Lysozyme
 - Kills bacteria

Immunoglobulin A (IgA)
 - Inhibits bacterial growth

a cyanide compound
 - Inhibit bacteria

defensins
 - Antimicrobial proteins
 - Cytokine - draws white blood cells into the mouth
Pharynx

- Pharyngeal constrictors
 - Swallowing
- Epiglottis
 - Prevents food entering trachea
Swallowing (or Deglutition)

- Requires 22 muscles!
- Tongue blocks oral cavity
- Soft palate blocks nasopharynx
- Epiglottis blocks trachea
Swallowing (or Deglutition)

- Tongue blocks oral cavity
- Soft palate blocks nasopharynx
- Epiglottis blocks trachea
Esophagus

- Straight, muscular tube
- about 10"
- Peristalsis
 - collapsed when empty
- Esophageal glands
 - Secrete mucus
Esophagus

- Esophageal hiatus
 - Penetration of diaphragm
 - Helps restrict backflow
- Lower esophageal sphincter
 - Not a separate muscle
 - Constriction of the esophagus
- Cardiac orifice
 - Entry into stomach
 - surrounded by a thickening of the muscles - cardiac sphincter
Stomach

- **Volume**
 - 50ml empty
 - 1-1.5L full
 - Can extend to 4L

- **Mechanical digestion**
 - Due to churning action

- **Chemical digestion**
 - Fats
 - Proteins

- **Chyme**
 - Pasty soup of semidigested food
Stomach regions

- Esophagus
- Cardiac orifice
- Cardiac region
- Fundic region
- Superior to cardiac orifice
- Pylorus
- Narrow passage
- Body – largest region
- Pyloric region
 - Antrum – funnel like area
 - Canal – narrower area
Stomach musculature

- Oblique
- Circular
- Longitudinal

- Gastric rugae
 - Not muscles!
 - allow stomach to expand
Stomach lining

- entirely mucus cells
 - 2 layers of mucus
 - both alkaline
 - top is viscous, insoluble
- Gastric pits
 - Open into 2-3 glands
Gastric glands

- Mucous cells
 - thin acidic mucus
- Regenerative (stem) cells
 - Lining is replaced every 3-6 days
- Parietal cells
 - Secrete HCl and intrinsic factor
- Chief cells
 - Secrete pepsinogen
- Enteroendocrine cells
 - Secrete hormones
 - (G cell here)

Produce 2-3L of gastric juice each day!
Gastric secretions

- **HCl**
 - Activates lingual lipase and pepsin
 - Softens connective tissues and plant cell walls
 - Denatures proteins
 - Destroys ingested pathogens
 - Converts ferric (Fe$^{3+}$) ions to ferrous (Fe$^{2+}$) ions
 - More absorbable

- **Pepsinogen**
 - Converted to pepsin
 - Digests proteins

- **Intrinsic factor**
 - Binds with B$_{12}$ to make it absorbable
 - Only indespensable function of the stomach!
Digestion and absorption in the stomach

- SMALL amounts of digestion
 - Starch
 - Fats
 - Proteins
- SMALL amounts of absorption
 - Aspirin
 - Some lipid-soluble drugs
 - alcohol
- Body’s largest gland (3 lbs)
- Many functions - only one important for digestion
 - Secretes bile
Liver

- composed of lobules
 - sesame sized
 - hexagonal structures
Liver microanatomy - Hepatic lobules

- Branch of hepatic portal vein
- Bile ductule - receives bile from bile canaliculi – narrow channels between hepatocytes
- Sinusoids - Blood filled
- Central vein
- Liver cells (hepatocytes)
- Hepatic triad - artery - vein - bile duct
- Branch of hepatic artery
Liver microanatomy - Hepatic lobules

- filtration unit
- blood from arteriole and venule move through sinusoids
- blood moves toward central vein
Liver microanatomy - Hepatic lobules

- Kupffer cells
 - macrophages that remove bacteria, old blood cells and other debris
Liver microanatomy- Hepatic lobules

- hepatocytes
 - store glucose as glycogen
 - make plasma proteins
 - store fat soluble vitamins
 - convert ammonia to urea
 - detoxifies blood
 - regenerate if injured
 - create bile

- hepatocytes
- store glucose as glycogen
- make plasma proteins
- store fat soluble vitamins
- convert ammonia to urea
- detoxifies blood
- regenerate if injured
- create bile
Liver microanatomy - Hepatic lobules

- Bile moves into bile canaliculi to bile duct
- Note blood and bile move countercurrent

Key structures:
- Portal triad
- Portal arteriole
- Portal venule
- Bile duct
- Bile canaliculi
- Kupffer cells
- Hepatic sinusoids
- Hepatocytes
Bile ducts

- Bile flows from bile ductules
- to right and left hepatic ducts
- To common hepatic duct
- To common bile duct
- to hepatopancreatic duct
- To gallbladder
Gallbladder

- 4" long; size of kiwi
- Stores and concentrates bile
- Releases bile into the cystic duct
- To the common bile duct
- To the hepatopancreatic duct
Bile

- Yellowish green fluid
- Contains
 - bile salts
 - cholesterol derivatives
 - emulsify fats
 - help keep cholesterol in solution
 - facilitate fat and cholesterol absorption
 - not excreted - are reabsorbed in the ileum
 - Cholesterol
 - triglycerides
 - Phospholipids
 - Bile pigments
 - Bilirubin – decomposed hemoglobin
 - processed by bacteria to give feces their color
Pancreas

- Both an endocrine and exocrine gland
- Exocrine function relates to digestion
Pancreas

- Secretes 1.2-1.5L of pancreatic juice each day
 - Thru pancreatic duct
 - To both the hepatopancreatic duct and the accessory pancreatic duct
Pancreas

- Acini
 - secrete digestive enzymes
- Islets of Langerhans
 - secrete insulin and glucagon
Pancreatic juice

- Sodium bicarbonate
 - Buffers the HCl (exactly!)

- Enzymes precursors
 - Trypsinogen
 - Chymotrypsinogen
 - procarboxylase

- Enzymes
 - Pancreatic amylase
 - Pancreatic lipase
 - Ribonuclease
 - Deoxyribonuclease

- Electrolytes (ions)

1. Trypsinogen is converted to trypsin by enteropeptidase (secreted by small intestine)
2. Trypsin converts chymotrypsinogen into chymotrypsin
3. Trypsin converts procarboxyypeptidase into carboxypeptidase
Small Intestine - regions

- Duodenum – 10 inches
 - From pyloric valve to duodenojejunal flexure
 - Bile and pancreatic juice enter here
 - Glands produce alkaline mucus
 - Counteract HCl
Small Intestine - regions

- Jejunum
 - 8 feet
- Ileum
 - 12 feet
 - Ends at the ileocecal juncture
- Circular folds
 - 1 cm tall
 - Duodenum through middle of ileum
 - Force chyme in a spiral path
 - Slows movement of chyme
 - Increases contact of chyme with intestine
- **Villi**
 - about 1mm tall
 - Largest in duodenum, smallest in ileum
- 2 cell types
 - Absorptive cells
 - Goblet cells – secrete mucus
- **Villi**
 - Arteriole, capillary bed, venule
 - Absorb most nutrients
 - Lacteal
 - Lymphatic capillary
 - Absorbs fat
- smooth muscle
 - shortens and lengthens the villus
 - moves lymph
 - increases contact with chyme
- **Microvilli**
 - Increases surface area of small intestine
 - Contain brush border enzymes
 - Are not secreted – contact digestion only
 - carbohydrates and proteins only
 - Activate pancreatic enzymes
Intestinal gland (or crypt)

- Similar to gastric gland
- secrete intestinal juice
- Paneth cells
 - determine flora
 - Secrete lysozyme, phospholipase, defensins
 - All antibacterial

- 1-2 L of intestinal juice is secreted each day
- pH of 7.4-7.8
- Mostly water and mucus
- no enzymes!
Intestinal gland (or crypt)
- enteroendocrine cells
 - secretin and cholecystokinin
- T cells
 - bind with antigens and kill target cells
- Stem cells that resurface the villi
 - 2-4 days
Function of the small intestine

- Segmentation
 - occurs when "loaded"
 - massages the chyme back and forth
 - chyme moves very slowly along

- Peristalsis
 - occurs after most nutrients have been absorbed
 - first wave starts near duodenum
 - subsequent waves begin further along
 - all material (food, bacteria, debris) is moved out - critical to prevent bacterial overgrowth
 - takes about 2 hours
Function of the small intestine

- Carbohydrate digestion overview
 - In mouth, salivary amylase
 - Begins breakdown of starch
 - Continues in stomach until acid level reduces to pH 4.5
 - 50% of starch may be broken down
 - In duodenum, pancreatic amylase
 - Finishes starch digestion (mostly to maltose) within 10 minutes
 - Brush border, maltase, sucrase, lactase
 - dextrinase and glucoamylase - digest oligosaccharides
 - maltase, sucrase, lactose
 - Converts remaining carbs to glucose
Function of the small intestine

- Carbohydrate absorption
 - glucose and galactose: active transport (co-transport with Na+)
 - fructose: facilitated diffusion
Function of small intestine

- **Protein digestion**
 - 3 sources of proteins
 - Dietary
 - Digestive enzymes
 - Sloughed epithelial cells
 - In stomach, pepsin
 - Digests 10-15% into short polypeptides (some amino acids)
 - Inactivated in duodenum due to increase in pH
 - In duodenum, trypsin and chymotrypsin
 - Create short peptides
 - Brush border, carboxypeptidase, aminopeptidase, dipeptidase
 - Create amino acids
Function of small intestine

- Amino acids are absorbed
 - active transport (co-transport with Na+)
- dipeptides and tripeptides
 - active transport (H+ dependent)
 - these are digested to amino acids within the epithelial cells
Function of small intestine

- Lipid digestion
 - In mouth, lingual lipase
 - Activated by acid in stomach
 - Digests 10% of ingested fat
 - In duodenum, bile salts
 - Emulsifies fat to increase surface area
 - In duodenum, pancreatic lipase
 - Digests fat in 1-2 minutes
 - Result of digestion is 2 fatty acids and a monoglyceride
Function of small intestine

- Fatty acids and monoglycerides associate with bile salts and lecithin to create micelles.
- At epithelium, fatty acids and monoglycerides are absorbed via simple diffusion.
- Inside epithelium, triglycerides reform.
- Chylomicrons form: triglycerides + phospholipids, lecithin, cholesterol.
- Exocytosis of chylomicrons to lacteals.
- Once in blood stream: triglycerides are digested to fatty acids and glycerol.
 - Remaining substances are processed by the liver.
Function of small intestine

- Nucleic acid digestion
 - In duodenum, pancreatic nucleases
 - Create nucleotides
 - Brush border, nucleosidases and phosphatases
 - Create phosphate, ribose or deoxyribose, nitrogenous bases
- Phosphate, sugar and bases are absorbed
 - all active transport
Function of small intestine

- Vitamin absorption
 - fat soluble (A, D, E, and K)
 - incorporate into micelles
 - water soluble (B and C)
 - diffusion or active transport
 - B12 - very large
 - intrinsic factor binds to it
 - complex binds to mucosal receptors (in terminal ileum)
 - uptake is via endocytosis
Function of small intestine

- Electrolyte absorption
 - most ions actively absorbed
 - Na+ - coupled to glucose and amino acid absorption
 - K+ - facilitated diffusion
- Iron
 - active transport into mucosa where it binds to ferritin: this is a local iron storage
 - women have 4x as much as men
 - If iron is needed, iron is transferred to transferrin - a plasma protein
- Calcium
 - regulated by vitamin D dependent calcium binding protein
Function of small intestine

- Water is absorbed
 - Intestine receives 9L of water a day!
 - 0.7L in food
 - 1.6L in drink
 - 6.7L in gastrointestinal secretions
 - 9L is absorbed
 - 95% is absorbed via osmosis in small intestine (remainder (all but 0.1L) is absorbed in large intestine)
Large Intestine

- 1.5m long
- Functions
 - absorption
 - formation of feces
- Haustra
 - puckers due to muscle tone
Large Intestine

- Cecum
 - Blind pouch
 - Appendix
 - Significant source of immune cells (lymphocytes)
Large Intestine

- Colon
 - Ascending colon
 - Transverse colon
 - Descending colon
 - Sigmoid colon
Large Intestine

- Rectum
 - 3 Rectal valves
 - Transverse folds
 - Retain feces
 - Pass gas
Large Intestine

- Anal columns
- Rectal sinuses
 - Secrete mucus when feces pass
- Hemorrhoidal veins
 - Lack valves
 - Subject to distension and venous pooling
Large Intestine

- Internal sphincter
 - involuntary
- External sphincter
 - voluntary
Functions of the colon

- Passage takes 12-24 hours
- Haustral contractions
 - Segmental movement that last 1 min. and occur every 30 min.
- Mass movements
 - Peristalsis over large areas that occur 3-4x daily
- Diverticula: breaks in the mucosa
 - If diet lacks bulk, colon narrows and these form (usually in sigmoid colon)
 - Diverticulitis = inflamed diverticula
Functions of the colon

- Bacterial flora
 - Ferment cellulose, xylan and other carbs (from food)
 - metabolize mucin, heparin, hyaluronic acid (produced by our body)
 - Synthesize B vitamins
 - Synthesize vitamin K (necessary for blood clotting proteins)
- Absorbs vitamins
- Reabsorbs water and electrolytes (NaCl)
 - 0.8L water is absorbed
Feces

- 75% water
- 25% solids
 - 30% bacteria
 - 30% undigested fiber
 - 10-20% fat (from broken down epithelial cells- NOT diet)
 - Protein
 - Sloughed epithelial cells
 - Salts
 - Mucus
 - Digestive secretions